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ABSTRACT
Modern data science applications increasingly use heterogeneous
data sources and analytics. This has led to growing interest in
polystore systems, especially analytical polystores. In this work,
we focus on emerging multi-data model analytics workloads over
social media data that fluidly straddle relational, graph, and text
analytics. Instead of a generic polystore, we build a “tri-store” sys-
tem that is more aware of the underlying data models to better
optimize execution to improve scalability and runtime efficiency.
We name our system AWESOME (Analytics WorkbEnch for SOcial
MEdia). It features a powerful domain-specific language named
ADIL. ADIL builds on top of underlying query engines (e.g., SQL
and Cypher) and features native data types for succinctly specify-
ing cross-engine queries and NLP operations, as well as automatic
in-memory and query optimizations. Using real-world tri-model
analytical workloads and datasets, we empirically demonstrate the
functionalities of AWESOME for scalable data science over social
media data and evaluate its efficiency.

1 INTRODUCTION
The rise of data science over large-scale social media data has been
transforming several fields, including many social sciences, digital
humanities, and cybersecurity [22, 25, 35]. For instance, in our own
ongoing multi-year collaboration with political scientists at UC
San Diego, unified analyses of large volumes of data from Twitter,
microblogs, and news corpora are enabling a deeper understanding
of pressing sociopolitical phenomena observed in social media such
as conspiratorial disinformation spreading during elections and
changes in criminal justice [36, 37].

A defining characteristic of such emerging data science work-
loads is that they are multi-model, more specifically tri-model, span-
ning the canonical logical data models of relational, graph, and text
data. This is largely a consequence of the end-users (e.g., political
scientists or security policy experts) naturally thinking at the level
of abstraction offered by all three of tables, graphs, and natural
language text. Furthermore, apart from the content of the social
media data (viz., tweets or other microblogs such as Sina Weibo),
large text corpora in the form of news articles, court documents,
public records, etc., and relational corpora in the form of entity
dictionaries, census data, geographic data, etc., are also commonly
used in such analytics tasks. Naturally, it is increasingly common at
the software level to handle such workloads using a mix of graph
DBMSs (e.g., Neo4j [2]), relational DBMSs (e.g., PostgreSQL [3]),
and full-text search systems (e.g., Solr [1]).

Example: PoliSci Workload. Figure 1 illustrates a simplified
political science workload on tweet data from the last few years.
Given a set of keywords about COVID-19, recent news articles
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Figure 1: Illustration of PoliSci workload.

containing any of them are found out through text queries against
a Solr document database. Then, a named entity recognition (NER)
algorithm is invoked on the collected documents to retrieve named
entities (e.g., “President Trump”). The returned entity list is then
joined with a table with Twitter handles of US Senators, which is
stored in a PostgreSQL relational database, to obtain the Twitter
users for named entities who are Senators. Finally, the Twitter
social network, stored in a Neo4j graph, is queried to retrieve all
the users who mentioned any of these Twitter users and all tweets
that contain any of these senators’ names.

While libraries in Python/R suffice for small datasets, handling
such data science workloads at scale is a key database systems
research challenge. Naturally, there is a growing body of work on
polystore systems, e.g., [11, 16, 18, 21, 32]. In a polystore, a query
processing middleware is built to access multiple underlying data
stores, giving users the illusion of a single engine. However, as the
complexity of social media analytics workloads grow, it is increas-
ingly crucial to support not just cross-store queries for retrieval or
simple analysis but also complex analytical operations. Such opera-
tions could involve the DBMS invoking specific external libraries,
e.g., an NLP library for NER in our PoliSci example. Other examples
include machine learning-based classification tasks on relational
tuples and graph analytics tasks such as centrality computation.

Unfortunately, we find that most prior polystores do not support
such rich analytics across these three data models. Furthermore,
much prior art also aim to be highly general in supporting many
stores, which often significantly restricts their ability to look into
the specifics of the cross-engine dataflows to optimize their run-
time performance at scale. In this work, we mitigate these issues
by proposing a “tri-store” system focused specifically on relational,
graph, and text analytics and elevating cross-engine dataflow opti-
mization to the middleware. We call our system AWESOME: Ana-
lytics WorkbEnch for SOcial MEdia data. Table 1 summarizes the
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Figure 2: Illustration of the AWESOME system architecture.

differences between AWESOME and key prior polystores (elabo-
rated further in Section 8). We now explain the key desiderata and
design decisions for our system.
1.1 System Desiderata and Design Decisions
• Tri-Model Dataflow Language. AWESOME must offer a uni-

fied high-level language to enable users to succinctly express
tri-store analytics spanning relations, graph, and text. It should
support “unistore-native” queries (e.g., SQL over RDBMS), basic
control flows such as iteration and conditionals, and basic data
types such as List and String to handle intermediates and pass
arguments to unistore-native queries.

• Tri-Store Middleware. AWESOME must work transparently
with underlying uni-stores to handle relational, graph, and text
data. We use PostgreSQL, SQLite, Neo4j, Tinkerpop, and Solr
as exemplars. Intermediate data must be handled automatically
without manual exports/imports. In our PoliSci example, the
named entities are joined with a PostgreSQL table and the join
result must be passed to a Cypher query in Neo4j.

• Complex Analytical Functions. AWESOME must provide a set
of popular complex analytical operators to support the tri-store
analytics, including NLP algorithms on text and graph analytics
algorithms. Extensibility via user-defined functions is desired.
In our PoliSci example, the Solr query result is sent to an NER
operator implemented by a popular NLP library.

• Execution Optimizations. AWESOME must support transpar-
ent physical query optimizations such as splitting computations
across underlying unistores carefully and automatically caching
(intermediate) data in memory when possible to reduce runtime.
In our PoliSci example, NER returns a table that is much larger
than the senators table in PostgreSQL. So, loading the senators
table into memory to process the join in memory can be faster
than pushing down the NER result to PostgreSQL.

• Strict Validation Mechanism. Some analytical operations such
as PageRank are time-consuming and run-time errors/exceptions
(e.g., type mismatch) lead to high overheads. So, a rigorous se-
mantics check mechanism at compile time is needed to avoid
runtime errors as much as possible.

1.2 Technical Contributions
In summary, this paper makes the following technical contributions.
• We present a formal description of ADIL, a dataflow language

straddling relations, graphs, and text data models with rigorous
semantics that enables the expression of complex workloads. An

early version of ADIL was briefly introduced but not formalized
in [8].

• We present the architecture of AWESOME, the first optimized
tri-store system to enable rich data science over social media data
at scale, spanning relations, graphs, and text data. Figure 2 illus-
trates our system architecture. AWESOME automates handling
of intermediate data to enable seamless user experience.

• We formalize the logical and physical levels of query planning
in AWESOME. We present a suite of transparent optimizations
to reduce runtime, including reducing data movement, placing
computations in memory, careful apportioning of resources, and
a cost model-based selection of execution plans.

• We present an extensive set of experiments using real-world
datasets to demonstrate AWESOME’s support for rich social me-
dia analytics, while also enabling higher scalability and runtime
efficiency than baseline approaches based only on an RDBMS or
in-memory Python.

2 ADIL: A DATAFLOW LANGUAGE
ADIL, the surface language for AWESOME, is designed as a dataflow
language. The user expresses an analysis workload in ADIL as a se-
quence of assignment statements where the LHS of the assignment
is a variable or multiple variables and the RHS is an expression.
Figure 3 presents the ADIL script for the PoliSci workload.

2.1 Data Types
ADIL supports the following data types in native. We annotate the
data types for some variables in Figure 3.
• Primitive types: Integer, Double, String, and Boolean.
• Relation and Record: A Relation variable represents a rela-

tional table and a Record variable is a single tuple of a relation.
• Property Graph and Graph Element: Users can construct,

query against, or apply analytical functions (e.g., PageRank) on
property graphs. A GraphElement variable can be either a node
or an edge with labels and properties.

• Corpus and Document: A Corpus is a collection of documents,
and each document consists of document content (String), a
document identifier (Integer) and tokens (List<String>).

• Matrix: We supportMatrix data type and commonly-used matrix
operators such as dot products on matrix-valued variables. In
addition, an AWESOME matrix has optional rowmap and column
map properties which are semantic mappings from matrix row
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Table 1: Features of existing polystore systems and AWESOME.
Language System Design

Native DBMS
Query Function Graph

Analytics
Text

Analytics
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Flow
Native Tri-
Data Model

RDBMS
Support

Graph DBMS
Support

Text DBMS
Support

In-memory
DBMS Support

BigDAWG [31] ✓ ✓ ✓

Rheemix [4, 20] ✓ ✓ ✓ ✓ ✓

Estocada [6] ✓ ✓ ✓

Tatooine [7] ✓ ✓ ✓ ✓

Myria [34] ✓ ✓ ✓ ✓ ✓

Hybrid [28, 33] ✓ ✓ ✓ ✓

AWESOME ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

List

String

Relation

temp
xiz675

1 INTRODUCTION USE newsDB;
create analysis PoliSci as (
keywords := [�corona�, �covid�, �pandemic�, �vaccine�];
temp := keywords.map(i =>

stringReplace(�text-field: $�, i));
t := stringJoin(� OR �, temp);
doc<text-field:String> := executeSOLR(�NewsSolr�,

���q= $t & rows=5000���);
entity := NER(doc.text-field);
user := executeSQL(�Senator�,

�select distinct t.name as name, t.twittername
as tname from twitterhandle t, $entity e
where LOWER(e.name)=LOWER(t.name)�);

userNameList := toList(user.name);
userNameP := userNameList.map(i =>

stringReplace(�t.text contains �$� �, i));
predicate := stringJoin(� OR �, userNameP);
users<name:String> := executeCypher(�TwitterG�,

�match (u:User)-[:mention]-(n:User)
where n.userName in $user.tname
return u.userName as name�);

tweet<t:String> := executeCypher(�TwitterG�,
�match (t:Tweet) where $predicate
return t.text as t�);

store(users, dbName=�Result�, tName=�users�]);
store(tweet, dbName=�Result�, cName=[(�text�, �t�));
);

Figure 1: Politician Tweets Analysis WorkloadFigure 3: PoliSci represented in ADIL.

(resp. column) indices to values in another data type. For example,
for a document term matrix, the row map is a mapping from row
indices to the document ids and the column map is a mapping
from column indices to terms (i.e., tokens).

• Collection: A List is a collection of indexed elements with ho-
mogeneous type; a Tuple is a finite ordered sequence of elements
with any type. List data type is strictly homogeneous: each ele-
ment should have the same type. However, there can be hetero-
geneous objects in a Tuple variable. For example, the following
tuple 𝑇 contains a relation, a graph, a list and constant values.
R := executeSQL(..., ...); //produces relation R
G := BuildGraphFromRelation(...); //produces graph G
T := {R, G, [1, 2, 3], "string", 2 };

In this paper, Relation, PropertyGraph and Corpus types are col-
lectively referred to as the “constituent data models” because they
correspond to the data models of underlying stores.

2.2 ADIL Workload Structure
An ADIL script starts by declaring a polystore instance registered
in AWESOME system catalog:
USE newsDB;
create analysis NewsAnalysis as {/*main code block*/}

AWESOME system catalog is a file that maintains the metadata for
each user-defined polystore instance including the alias, connection
detail, and schema of data stores in this instance. For underlying
data store which admits a schema (e.g., PostgreSQL, Solr), a copy
of the schema is maintained in the catalog. For stores that do not
admit a schema (e.g., Neo4j), a set of schema-like information (e.g.,
node/edge labels/properties) is maintained. In the above example,
the metadata of polystore instance newsDB will be retrieved from
the system catalog which contains the information of all DBMSs
used in the workload named NewsAnalysis.

The main code block contains a sequence of assignment state-
ments (Section 2.3) and store statements (Section 2.4).

2.3 Assignment Statement
An ADIL assignment statement evaluates an RHS expression and
assigns the result to one or more LHS variables. The grammar for
assignment statement is shown as follows.
⟨assignment-statement⟩ ::= ⟨var1⟩ ‘, ’ ⟨var2⟩ ‘, ’ · · · ‘:=’ ⟨assign⟩
⟨assign⟩ ::= ⟨basic-expr⟩ | ⟨ho-expr⟩
The RHS expression (<assign>) can be “basic” or “higher-order”
explained by the following grammar fragments,
⟨basic-expr⟩ ::= ⟨const⟩|⟨query⟩|⟨func⟩
⟨ho-expr⟩ ::= ⟨assign⟩ ‘>’ | ‘==’ | ‘<’ ⟨assign⟩

| ⟨var⟩‘.map(’ ⟨lVar⟩ ‘->’ ⟨assign⟩ ‘)’
| ⟨var⟩‘.reduce((’ ⟨lVar1⟩ ‘,’ ⟨lVar2⟩ ‘) ->’ ⟨assign⟩ ‘)’
| ⟨var⟩ ‘ where ’ ⟨assign⟩

2.3.1 Basic Expression. <basic-expr> includes three types:
Constant Expression (<const>): A constant expression evaluates
to a constant of any allowed data type. The expression can itself be
a constant, e.g., [’x’, ’y’, ’z’], or a prior constant variable, or
an element of a prior collection variable, e.g., a[1].
Query Expression (<query>): A query expression executes a
query against a data store or against an AWESOME variable with a
constituent data model. It uses standard query languages: SQL-93
for relational queries, OpenCypher [13] for property graph queries,
and Lucene [24] for retrieval from text indices. In Figure 3, three
query expressions are marked in pink and they use executeSOLR,
executeSQL and executeCypher keywords respectively. The first
argument of a query expression is the alias of target DBMS regis-
tered in the polystore instance. If the query is against a variable
created in prior statements, the first argument is left empty. The
second argument is a standard Lucene/SQL/Cypher query with the
exception of the $ followed by a variable name (highlighted by the
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rounded rectangles in the figure). ADIL uses $ as a prefix of the
variable passed as a parameter to a query.
Function Expression (<func>): AWESOME supports a rich native
library for common data analytical tasks. The expression includes
function name with required positional parameters followed by
optional and named parameters. A parameter can be a constant or
a variable. The expression can return a single or multiple variables.
The NER function expression marked as brown in Figure 3 takes a
relation variable as parameter and returns a relation variable.

2.3.2 Higher-Order Expression. A higher-order expression is recur-
sively defined where another expression serves as its sub-expression.
The following snippet from NewsAnalysis workload shows an exam-
ple statement where the RHS is a nested higher-order expression:
wtmPerTopic := topicID.map(i =>

WTM where getValue(_:Row, i) > 0.00);

topicID is a list of Integers and WTM is word-topic matrix where
each row presents a word’s weights on all topics. For each topic,
it produces a word-topic matrix consisting of words with weights
higher than 0 on this topic. This snippet contains map, filter and
binary comparison which are explained as follows.
Map Expression: A map expression operates on a collection vari-
able, evaluates a sub-expression for each element in the collection,
and returns a new collection object. The sub-expression can be a
constant, a query, a function or another higher-order expression.
In this snippet, it takes a list of integers (topicID) as input, and for
each, applies another higher-order expression (a filter expression)
on the WTM matrix to generate a matrix. Thus the returned variable
(wtmPerTopic) is a list of matrices.
Filter Expression: The filter expression is indicated by the where
clause – its sub-expression is a predicate; it returns a new collec-
tion with values which satisfy the given predicate. Since a matrix
can be iterated by rows or by columns, users need to specify the
iteration mode: the underscore sign (_) is used to represent every
single element in the matrix, and the colon (:) followed by the type
specify the element type. In the example snippet, it applies a binary
comparison predicate on each row of the matrix and returns a new
matrix consists of the rows satisfying the predicate.
Binary Comparison and Logical Operations: A binary compar-
ison accepts two expressions and compares their values to return a
Boolean value. In the example above,
getValue(_:Row, i) > 0.00

checks whether the 𝑖-th element of a row vector is positive. More
generally, ADIL supports any binary logical operators such as AND,
OR and NOT over predicates.
Reduce Expression: A reduce operation aggregates results from a
collection by passing a commutative and associative binary operator
as its sub-expression. For example, the following snippet
R := relations.reduce((r1,r2) => join(r1,r2,on="id"))

takes a list of relations as input and then joins each two tables and
returns a new table at the end.

2.4 Store Statement
A store statement specifies the variables to be stored to a persistent
storage, which can be an underlying DBMS registered in the system

catalog or the AWESOME file system; it also includes the instruc-
tions for how to store the variable. In Figure 3, the last two lines
store users and tweet variables to relational DBMS, and specifies
the DBMS alias (dbName parameter), table name (tName optional
parameter) and mapping between the targeted column names to
the relational variables’ column names (cName optional parameter).

2.5 Some Properties of ADIL
A full discussion of the formal properties of ADIL is beyond the
scope of this paper. Here we provide a few properties that will be
useful in validating and developing logical plans from ADIL scripts.
(1) ADIL does not have a for loop or a while operation. Instead, it

uses the map operation to iterate over a collection and apply
function over each element, the filter operation to select out
elements from a collection that satisfies predicates, the reduce
operation to compute an aggregate function on a collection.
In ADIL, the collection must be completely constructed before
the map (resp. filter or reduce) operation can be performed.
Therefore, these operations are guaranteed to terminate.

(2) ADIL is strongly typed.
(3) In an assignment where the RHS expression is a query in a

schemaless language like OpenCypher, the user must specify a
schema for the LHS variable in the current system.

(4) The data type and some metadata information of any LHS
variable can be uniquely and correctly determined by analyzing
the RHS expression (see Section 4).

3 SYSTEM ARCHITECTURE
The system architecture of AWESOME polystore is shown in Figure
2. We summarize some primary architectural components:
(a) Data Stores. It supports on-disk DBMSs (Neo4j, Postgres and
Solr) and in-memory DBMSs (Tinkerpop and SQLite).
(b) Analytical Capability. It incorporates existing analytical li-
braries for NLP and graph algorithms such as CoreNLP and JGraphT,
and AWESOME native functions written in Java.
(c) Query Processing. The “query” in AWESOME is essentially a
multi-statement analysis plan consisting of data retrieval, transfor-
mation, storage, function execution and management of interme-
diate results. The query processor verifies an ADIL script, creates
the optimal logical plan, generates a set of physical plans and then
applies cost model and data parallelism mechanism to create an
optimal execution plan.

4 VALIDATING ADIL SCRIPTS
An ADIL script is complex with many expensive operations. To re-
duce the avoidable run-time errors, AWESOME implements a strict
compile-time semantics check mechanism which consists of two
parts: 1) Validation refers to determining the semantic correctness
of each expression, 2) Inference refers to inferring the data type and
metadata of the variables generated from each expression.

4.1 Validation
For different RHS expressions, the validation process is different.
System catalog based validation. To validate a query expression
(<query>) against an external DBMS, the system catalog is used to
get the schema information. For example, for a SQL query, it checks
if the relations and columns in the query exist in the database.
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Table 2: Metadata for different data types.
Data Type Metadata

Relation Schema 𝑆 = {ColName : Type}

Property Graph

Node labels set 𝑁𝐿
Node properties map 𝑁𝑃 = {PropName : Type}
Edge labels set 𝐸𝐿
Edge properties map 𝐸𝑃 = {PropName : Type}

List Element type, Element metadata, Size
Tuple Each element’s type and metadata, Size

Map
Key type, Key metadata, Value type,
Value metadata, Size

Matrix Row (and column) count, Element type

Function catalog based validation. For a function expression,
AWESOME checks if the data types of the input variables/constant
values are consistent with the parameters information registered
in the function catalog.
Validation with Variable Metadata. Variable metadata map stores
the key properties of variables and is built through inference pro-
cess. It is looked up for every expression containing a variable. For
a query expression, if it queries on relation-valued variables, their
schema is found from the variable metadata map instead of the
system catalog. For a function expression, if an input parameter is
a variable, its data type will be found in the map.
Validation Example. Usually, more than one types of validation
need to be used. We use the example snippet from Sec. 2.3.2 to show
how to validate a nested higher-order expression. To validate the
Map expression, it gets the data type and element type of topicID
from the variable metadata map, then it checks if the variable has a
collection type and the element type will be used to validate the
sub-expression which is a Filter expression; to validate the Filter
expression, similar to the Map expression, the data type of WTM is
checked and the element type is used to validate the sub-expression
which is a binary comparison expression, besides, it also checks
if the return type of the sub-expression is a Boolean; to validate
the binary comparison expression, it validates if the two operands
have the same data type and the data type is comparable: in this
example, the type of the left operand can be inferred based on the
function catalog; At the end, it checks the getValue function using
the element type information of WTM and topicID.

4.2 Inference
Inference refers to building variable metadata map. Table 2 in the
technical report shows the variable types, and their corresponding
metadata properties. For each statement in an analysis plan, the
RHS expression is validated and then the type and metadata of the
LHS variables are inferred as much as possible and be stored in the
map.

The inference mechanisms are different for different expressions.
For a SQL query expression, the schema of the returned relation is
inferred by parsing the SELECT clause and looking up the system
catalog/variable metadata map to get column types. For function
expressions, the return types reside in the function catalog. For ex-
ample, the following expression invokes function lda. By querying
the function catalog, we know that it outputs two matrix variables.
Thus the data types of DTM and WTM will be set as Matrix.

DTM, WTM := lda(processedNews,
docid=true, topic=numTopic);

ListCreation map

filter

LDA

WTM

>

getValue Constant

getValue(_, i) > 2

topicID

getValue(_, i) 

blockID: 1 
local variable: _ 

blockID: 0 
local variable: i 

Figure 4: Logical plan of higher-order expressions.

For nested expressions, the inference is handled from the innermost
expression to the outermost expression. Taking the snippet shown
in Sec. 2.3.2 as an example, the LHS variable’s type and metadata is
inferred by the following steps: 1) the Filter expression returns a
matrix since WTM is a matrix; and 2) Map expression will return a
list of matrices since its sub-expression returns a matrix.
5 LOGICAL PLAN
After validating the correctness of an ADIL script, a logical plan will
be constructed. A logical plan is a DAG where each node represents
a logical operator.
5.1 Logical Plan Creation
The initial logical plan is directly translated from the parsing results.
In most cases, each expression in the ADIL script corresponds to a
single logical operator. For example, an ExecuteSQL query expres-
sion will be mapped to an ExecuteSQL logical operator. However, for
specific functions expressions or higher-order expressions, extra
processing steps are required to generate the initial logical plan.
Input-based Function Translation. For analytical functions, the
corresponding logical operators can vary based on different func-
tion inputs. Table 3 presents some functions. For example, the
function LDA can take either a Matrix variable or a Corpus variable
as input, which corresponds to logical operators LDAOnTextMatrix
and LDAOnCorpus respectively.
Higher-order Expressions to Sub-plans. For higher-order ex-
pressions (e.g., map expressions), a single expression will be trans-
lated to a sub-plan since it contains sub-expressions. For the nested
higher order expression shown in Section 2.3.2, the logical plan is
given in Figure 4. In Figure 4, there are two types of edges denoting
data flow and sub-operator consumption, respectively. The Filter
operator takes data from LDA and applies a binary comparison
sub-operator. The Map operator takes data from ListCreation and
applies the Filter sub-operator on each element of the data. Both
Map and Filter create a local variable to denote each element of a
collection, and the scope of such local variable is the sub-expression
block of that higher-order expression.

5.2 Logical rewriting
After creating the initial logical plan, a set of rewriting rules will
be applied to generate an optimized logical plan.
Rule 1: Function decomposition. Some functions can be decom-
posed to several logical operators to achieve a deeper level of opti-
mization. For example, for NER function which recognizes named en-
tities in corpus, it will be translated to a series of CoreNLPAnnotator
operators with different annotation sub-operators.
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Table 3: Some of ADIL functions and logical operators.
ADIL Function Input Parameter Logical Operator(s)

Preprocess
Column
List<String>
Corpus

CreateCorpusFromColumn
CreateCorpusFromList
NLPAnnotator(tokenize)
NLPAnnotator(ssplit)
NLPAnnotator(pos)
NLPAnnotator(lemma)
FilterStopWords

NER

Column
List<String>
Corpus
AnnotatedCorpus

CreateCorpusFromColumn
CreateCorpusFromList
NLPAnnotator(tokenize)
NLPAnnotator(ssplit)
NLPAnnotator(pos)
NLPAnnotator(lemma)
NLPAnnotator(ner)

TopicModel TextMatrix TopicModelOnTextMatrix
Corpus TopicModelOnCorpus

LDA Matrix LDAOnTextMatrix
Corpus LDAOnCorpus

SVD Matrix CreateTextMatrix
SVDOnTextMatrixCorpus

Sum
List Column2List

GetVector
SumList
SumVector

Column
Vector
Matrix, Index

(b) After map fusion 

Map

(a) Before map fusion

CollectGraphElementFromDocsMap

Map

Map

Map

CreateRelation

ExecuteSQL

CollectGraphElementFromRelation

Map

Map

CreateGraph

PageRank

CollectGraphElementFromDocs

CreateRelation

ExecuteSQL

CollectGraphElementFromRelation

CreateGraph

PageRank

Figure 5: Illustration of map fusion.

Rule 2: Redundancy elimination. The same operators which
take the same input data will only be executed once. As Table 3
shows, some functions may share common logical operators, and
these common operators will be merged.
Rule 3: Operators fusion. There are two special operators which
apply a sub-operator on each single element of a collection vari-
able: Map and NLPAnnotator. For a series of Map or NLPAnnotator,
they will be fused and the sub-operators of them will be connected,
which are termed as Map Fusion and NLP annotation pipeline. Fig-
ure 5 shows an example that corresponds to a snippet of workload
NewsAnalysis, the left plot is the initial logical plan, and the right
one applies map fusion. This rewriting has two advantages: 1) the
intermediate results will not be materialized which saves memory.
2) it will benefit the candidate physical plans generation which will
be discussed in detail in the physical planning section (Section 6).

Supposing the following ADIL snippet,
processedDoc:= Preprocess(doc);
entity:= NER(doc);

Figure 6 illustrates the aforementioned rewriting rules. The first
part is the initial logical plan, and the second part shows the plan
after applying the function decomposition rule. For the third part,
functions Preprocess and NER share a series of common logical

NLPAnnatator
（tokenize）

ExecuteSolr

NLPAnnatator
（ssplit）

NLPAnnatator
（pos）

NLPAnnatator
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Figure 6: An Illustration of logical plan rewriting rules.

Algorithm 1: Physical Plan Generation
Input: A logical plan𝐺 = (𝑉 , 𝐸) , a boolean flag 𝑏𝑢𝑓 𝑓 𝑒𝑟 .
Output: Candidate physical plans: 𝑐𝑎𝑛𝑑𝑃𝑙𝑎𝑛𝑠

1 𝑐𝑎𝑛𝑑𝑃𝑙𝑎𝑛𝑠 ← CandidatePhsicalPlanGen (𝐺 );
2 𝑐𝑎𝑛𝑑𝑃𝑙𝑎𝑛𝑠 ← AddDataParallelism (𝑐𝑎𝑛𝑑𝑃𝑙𝑎𝑛𝑠);
3 if 𝑏𝑢𝑓 𝑓 𝑒𝑟 then 𝑐𝑎𝑛𝑑𝑃𝑙𝑎𝑛𝑠 ← AddBuffering (𝑐𝑎𝑛𝑑𝑃𝑙𝑎𝑛𝑠);

operators which are merged based on Rule 2. The final part applies
Rule 3 to generate an NLP annotator pipeline, which is a common
practice in NLP toolkits such as Standford coreNLP.

6 PHYSICAL PLAN
Based on the optimized logical plan, we introduce the physical
planning details of AWESOME. As shown in Algorithm 1, there are
mainly three steps to generate the candidate physical plans, each
of which will be introduced in the following sections.

6.1 Candidate Physical Plans Generation
We introduce the pattern based transform algorithm to generate a
set of candidate physical plans from a logical plan DAG. To begin
with, we provide some definitions as follows.

Definition 6.1 (Pattern Set). A pattern set 𝑃𝑎𝑡 : {{𝑂𝑃𝑙 , 𝐸𝑙 } →
{{𝑂𝑃𝑝 , 𝐸}}} is a mapping where a key is a logical sub-DAG and a
value is a set of physical sub-plans. The pattern set is ordered by the
sizes of keys (i.e., the numbers of nodes in the logical sub-DAGs) to
make sure that in the subsequent procedures the larger patterns in
a logical plan are matched earlier.

Definition 6.2 (Candidate Physical Plans). Candidate physical
plans consist of a DAG 𝑃𝐺 = {𝑂𝑃𝑝 , 𝐸} which contains some virtual
nodes, and a map 𝑃𝑀 : 𝐼 → {𝑂𝑃𝑝 , 𝐸} where a key is a virtual node
id and a value is a set of physical sub-plans.

We propose Algorithm 2 to generate the candidate physical
plans. Table 4 lists some logical operators and their corresponding
physical operators. For some logical operators like LDAOnCorpus
or some logical sub-DAGs, each corresponds to only one candidate
physical operator or sub-plan. In this case, each operator or sub-
DAG will be directly replaced by the physical operator or sub-plan
(lines 6-7). On the other hand, there exist logical operators or sub-
DAGs corresponding to multiple candidate physical operators or
sub-plans. For example, in Figure 7, a logical sub-DAG CreateGraph
→ ExecuteCypher can be transformed to multiple different physical
sub-plans shown in the dashed rectangle marked by Node 1. In this
case, the operator or sub-DAG will be replaced by a virtual node,

6



AWESOME: Empowering Scalable Data Science on
Social Media Data with an Optimized Tri-Store Data System

CollectGraphElementFromDocs

CollectGraphElementFromRelation

Node 1

Node 2

CreateRelation @SQLite

ExecuteSQL @SQLite

CreateRelation @Postgres

Node 1: 

Map

Node 2: 

CreateRelation @Postgres

PageRankInPostgres PageRank

Tinkerpop

PageRank

JGraphT

ExecuteSQL @Postgres

CreateTinkerpop

Graph

CreateJGraphT

Graph

Figure 7: Candidate physical plans for Figure 5 logical plan.

and the virtual node ID with its corresponding physical sub-plans
will be stored in the map 𝑃𝑀 (lines 8-9).

Figure 7 shows the candidate physical plans for the logical plan
in Figure 5. There are two virtual nodes and each corresponds to
several physical sub-plans. This figure also shows the advantage of
Map Fusion which connects all the sub-operators of a series of Maps
so that the sub-DAG matched with a pattern in the pattern set could
have larger size and thus leads to more efficient candidate plans. For
example, after map fusion, the CreateGraph→ExecuteCypher pat-
tern will be translated to three physical sub-plans. However, with-
out map fusion, the CreateGraph itself will be translated to three
candidate operators: CreateTinkerpopGraph, CreateNeo4jGraph and
CreateJgrapht, since the JgraphT library does not support Cypher
queries, if CreateJgrapht is chosen during execution, then it will
initiate a set of typecasting transformations before executing Exe-
cuteCypher, which increases the overall cost.

6.2 Partitioned Data Parallelism
AWESOME exploits data parallelism to take advantage of modern
multi-core systems. Table 4 presents some physical operators with
their data parallel capabilities. ST means single-threaded operators
which can not be executed in a data parallel fashion, PR means
data parallelizable operators, and EX means operators provided by
external libraries. The execution of EX operators is fully supported
by external libraries and can utilize multi-core feature in their native
implementation, and thus they are excluded from the subsequent
AWESOME optimizations which are based on data parallelism.

For a PR operator with multiple inputs, it is associated with a
𝑐𝑎𝑝𝑂𝑛 attribute specifying the input on which it has data paral-
lelism capability. For example, the FilterStopWords operator takes a

Algorithm 2: Candidate Physical Plan Generation
Input: An ordered pattern set 𝑃𝑎𝑡 ; An optimal logical plan DAG𝐺 = (𝑉 , 𝐸) .
Output: Candidate physical plans: 𝑃𝐺 and 𝑃𝑀 .

1 𝑃𝐺 ← 𝐺, 𝑃𝑀 ← {};
/* match patterns from the largest to the smallest. */

2 for 𝑝𝑎𝑡 ∈ 𝑃𝑎𝑡 do
3 𝑝𝑆𝑢𝑏𝑠 ← 𝑃𝑎𝑡 [𝑝𝑎𝑡 ];
4 𝑙𝑆𝑢𝑏𝑠 ← FindMatchPattern (𝑃𝐺, 𝑝𝑎𝑡 ) ;
5 for 𝑠𝑢𝑏 ∈ 𝑙𝑆𝑢𝑏𝑠 do

/* for a pattern which only has one physical sub-plan,

directly replace the pattern with the DAG. */

6 if 𝑝𝑆𝑢𝑏𝑠.𝑠𝑖𝑧𝑒 == 1 then
7 𝑃𝐺 ←SingleOperatorTransform (𝑃𝐺, 𝑠𝑢𝑏, 𝑝𝑆𝑢𝑏𝑠);

/* for a pattern with several candidate physical
sub-plans, transform 𝑠𝑢𝑏 to a virtual node and add
the node id and physical sub-plans to map 𝑃𝑀. */

8 else
9 𝑃𝐺, 𝑃𝑀 ← PatternTransform (𝑃𝐺, 𝑃𝑀, 𝑠𝑢𝑏, 𝑝𝑆𝑢𝑏𝑠);
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Figure 8: Illustration of data parallel execution.

corpus and also a list of stop-words as input, and it can be executed
in parallel by partitioning the corpus input. In this case, 𝑐𝑎𝑝𝑂𝑛 will
be set as the ID of the corpus variable. Every PR operator will be
executed in parallel by partitioning the 𝑐𝑎𝑝𝑂𝑛 input data. Figure 8
shows an illustration. The left sub-figure shows the original physi-
cal plan DAG and the right sub-figure shows the plan DAG after
considering data-parallelism. When an operator with PR capability
gets its input: if its 𝑐𝑎𝑝𝑂𝑛 input was not partitioned, a Partition step
will be added which generates partitioned result; if a non-𝑐𝑎𝑝𝑂𝑛
input was partitioned, then a Merge step will be added to collect
data from multi-threads to a single collection; When an operator
with ST capability gets data from an operator with PR capability, a
Merge step will be added.

6.3 Buffering Mechanism
AWESOME employs a buffering mechanism to avoid storing un-
necessary intermediate results in memory. Different from pipeline,
buffering mechanism does not utilize multiple cores to execute dif-
ferent operators simultaneously. Some operators can process input
in a batch-by-batch manner, and some can generate output in a
batch-by-batch manner. We refer data with this manner as stream
hereafter. There are four types of buffering capabilities:
(1) 𝑆𝐼 (Stream-Input): the input can be passed as stream to the

operator, but it produces a whole inseparable result at once;
(2) 𝑆𝑂 (Stream-Output): the operator takes an inseparable input

but can produce result progressively as stream;
(3) 𝐵 (Blocking): both the input and output need to be a whole;
(4) 𝑆𝑆 (Stream-Stream): both the input and output can be a stream.

Each physical operator is associated with its buffering capability.
Table 4 presents it for some physical operators. Similar to data par-
allelism capability, there is another 𝑐𝑎𝑝𝑂𝑛 attribute associated if the
operator has more than one input. The physical DAG will be parti-
tioned to a collection of chains. Inside each chain, the intermediate
result is not stored in memory; the upstream operator produces
stream output to be consumed by the downstream operator. The
data across chains has to be stored in memory.

The collection of chains is collected from the physical DAG by
partitioning it based on the partition rules which are shown below
and also illustrated in Fig. 9:
• For an edge 𝑒 = (𝑜𝑝𝑒1, 𝑜𝑝𝑒2), if 𝑜𝑝𝑒1 can’t generate stream result

or 𝑜𝑝𝑒2 can’t take stream input, 𝑒 will be cut. For example, in
Fig. 9, the edge between 𝑜𝑝1 and 𝑜𝑝21 is cut.

• For an edge 𝑒 = (𝑜𝑝𝑒1, 𝑜𝑝𝑒2), if data from 𝑜𝑝𝑒1 to 𝑜𝑝𝑒2 is not the
𝑐𝑎𝑝𝑂𝑛 input of 𝑜𝑝𝑒2, 𝑒 will be cut. In Fig. 9, the edge between
𝑜𝑝22 and 𝑜𝑝12 is cut.
• For an operator 𝑜𝑝 , if it has more than one outgoing edges, then

all outgoing edges will be cut. In Fig. 9, the outgoing edges from
𝑜𝑝2 are all cut.
AWESOME users have the option to turn on buffering mecha-

nism. The buffering mechanism would be very helpful if : 1) the
7
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Table 4: Summary of AWESOME logical and physical operators.
Types Logical Operators Physical Operators DataParallelCap BufferingCap

Query
ExecuteCypher
ExecuteSQL
ExecuteSolr

ExecuteCypher@Neo4j
ExecuteCypher@Tinkerpop
ExecuteSQL@Postgres
ExecuteSQL@SQLite
ExecuteSolr

EX
EX
EX
EX
EX

SO
SO
SO
SO
SO

Graph Operations
BuildWordNeighborGraph
BuildGraphFromRelation
PageRank

CollectGraphElementsFromDocs
CollectGraphElementsFromRelation
CreateTinkerpopGraph
CreateNeo4jGraph
PageRankTinkerpop

PR
PR
EX
EX
EX

SS
SS
SI
SI
SO

Text Operations
NLPAnnotator
LDAOnCorpus
TopicModel

CreatDocumentsFromRecords
CreatDocumentsFromList
CreateTextMatrix
LDAOnCorpus
SVD

PR
PR
PR
EX
EX

SS
SS
SS
SI
B

rule 1
rule 2

rule 3

Figure 9: Illustration of buffering rules.

analysis plan contains many data flow edges which buffer can be
added to; or 2) AWESOME is running on a memory-limited ma-
chine; or 3) users care about the responsiveness of the system and
expect to get some initial results back soon without waiting for the
complete results.

6.4 Failed Attempt: Pipeline + Data Parallelism
We built a framework that hybridizes pipeline (i.e., task parallelism)
and data parallelism, however, the experimental results reveal that
such framework is not suitable for AWESOME. We briefly intro-
duce this framework and explain why this technique did not boost
performance to provide some insights for future researches.

Similar to the buffering mechanism, an AWESOME physical DAG
is partitioned into a list of chains based on the partition rules. Then
each chain will form a pipeline where operators can be executed
simultaneously using multi-cores. Once the upstream operator pro-
duces a batch of results, the downstream operator will be executed
on that batch immediately and simultaneously. Both pipeline and
data parallelism utilizes multi-cores to increase resources utiliza-
tion, thus we define a scheduling problem to allocate a specific
amount of cores (the number of cores in an OS) to operators in each
pipeline chain. A simple solution is to allocate cores to match the
produce and consume rates of data.

However, from the experimental results, this framework is not
more efficient than data parallelism framework even under the best
allocation strategy due to two properties of AWESOME operators.
We theoretically explain the reason why this framework does not
outperfrom data parallelism framework. For a simple pipeline chain
with two operators: 𝑜𝑝1 → 𝑜𝑝2, suppose that there are a total of

𝑛 cores and it costs 𝑡1 for 𝑜𝑝1 to produce a batch of data and 𝑡2
for 𝑜𝑝2 to consume the batch, then there will be 𝑡1𝑛/(𝑡2 + 𝑡1) cores
assigned to 𝑜𝑝1 and the rest of cores assigned to 𝑜𝑝2.

Suppose that 𝑜𝑝1 will produce𝑚 batches in total, then the exe-
cution time of applying data parallelism solely 𝑇1 and of applying
pipeline + data parallelism 𝑇2 can be computed as,

𝑇1 =
(𝑡1 + 𝑡2)𝑚

𝑛
+ 𝑎𝑔𝑔 ∗ 𝑛

𝑇2 = max{ 𝑡1𝑚
𝑛1

,
𝑡2𝑚
𝑛 − 𝑛1

} + 𝑎𝑔𝑔 ∗ 𝑛1,
(1)

where 𝑛1 is the number of cores assigned to 𝑜𝑝1, and 𝑎𝑔𝑔 ∗ #𝑐𝑜𝑟𝑒 is
the sequential aggregation cost of data parallelism. Since for AWE-
SOME aggregation operators such as SUM, the aggregation cost is
usually very small and can be negligible comparing to other time-
consuming analytical functions, we can prove that𝑇1 ≈ (𝑡1+𝑡2)𝑚𝑛 ≤
max{ 𝑡1𝑚𝑛1

,
𝑡2𝑚
𝑛−𝑛1
} ≈ 𝑇2 always holds where the equality is achieved

when the above optimal allocation solution is applied. Thus, the
pipeline and data parallelism framework can’t outperform data
parallelism if all operators in a chain are data parallel-able.

Appendix D presents the data parallel capability and buffering
capabilities for most AWESOME operators. In the future, when
there are more operators with different properties are added to
AWESOME, this framework may have chance to outperform the
solely data parallelism framework.

7 LEARNED COST MODEL
The query planning stage generates multiple candidate physical
plans, and in the execution stage, the optimal one will be chosen at
run-time based on a learned cost model.

For each virtual node which corresponds to multiple candidate
sub-plans, the cost model is applied to each sub-plan to estimate
the execution cost and the sub-plan with the lowest cost will be
chosen. We use a learned cost model instead of a rule-based model
based on two reasons:
• Cost should be decided at sub-plan level instead of operator-level,

which makes rule-based optimization hard to design. For a single
logical operator with different physical implementations, it is
easy to design rules to decide which implementation should be
chosen under what circumstance. However, in the pattern set,
each logical sub-plan may consist of several logical operators and
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each of them may be transferred to multiple different physical
operators, leading to a large size of rules space.

• The cost of a physical operator may depend on several features
and a rule-based model is too simple to represent the complex
relationship.

7.1 Cost Model
We provide a learned cost model to estimate the execution time
for each candidate physical sub-plan denoted as 𝑆 . Suppose that
𝑆 consists of multiple operators {𝑜𝑝1, · · · , 𝑜𝑝𝑛}, the overall cost
estimation is given as the sum of the estimated cost of all operators
since AWESOME does not apply task parallelism, i.e.,

𝑒𝑠𝑡𝑆 = 𝐶𝑜𝑠𝑡 (𝑜𝑝1) + · · · +𝐶𝑜𝑠𝑡 (𝑜𝑝𝑛), (2)

where 𝐶𝑜𝑠𝑡 (·) is a trained linear regression model with the poly-
nomial of raw features (degree 2) as variables that predicts the
execution cost of a physical operator, i.e.,

𝐶𝑜𝑠𝑡 (𝑜𝑝) = 𝑤0 +𝑤1 𝑓1 + · · · +𝑤𝑛 𝑓𝑛 +𝑤 ′1 𝑓
2

1 + · · · +𝑤
′
𝑛 𝑓

2
𝑛

+𝑤 (1,2) 𝑓1 𝑓2 + · · · +𝑤 (𝑛−1,𝑛) 𝑓𝑛−1 𝑓𝑛,
(3)

where 𝑓1, · · · , 𝑓𝑛 are the raw features for 𝑜𝑝 . 𝐶𝑜𝑠𝑡 (𝑜𝑝) is trained
based on training data collected from calibration for operator 𝑜𝑝 .
For relation-related operators, the raw features include the sizes
of tables; for graph-related operators, node count or edge count is
selected as a raw feature and for some graph queries, the predicate
size can also be a raw feature.

7.2 Calibration
To train the individual cost model 𝐶𝑜𝑠𝑡 (·), we design a set of syn-
thetic datasets which vary at some parameters, and run each oper-
ator on different datasets to collect a set of execution time.
Operators and features. We mainly train cost model for operators
which are graph-related or relation-related.

For graph operators, we evaluate common operators such as
CreateGraph and PageRank. The graph size serves as one feature
for the cost estimation. For ExecuteCypher, there are various types
of Cypher queries and we evaluate two typical types of queries:
Type I: Queries with a series of node or edge property predicates.
For example, Match (n)-[]-(m) where n.value in L and m.value in L
where 𝐿 is a list of strings. The size of 𝐿 is another raw feature that
decides the query cost.
Type II: Full text search queries. In this kind of queries, there is
a node/edge property which contains long text and the queries
will find out nodes/edges whose text property contains specific
strings. For example, Match (n)-[]-(m) where n.value contains string1
or n.value contains string2 or ...... The number of the OR predicates
is another raw feature of the cost model.

For relation operators, we test the ExecuteSQL operator. Based
on the locations of the tables in the query, there are different can-
didate execution sub-plans for this operator. For example, if all
tables involved are AWESOME tables generated from the upstream
operators, then there are two candidate plans: (a) store all relations
to in-memory SQLite, and execute the query in SQLite; (b) store all
relations in PostgreSQL, and execute the query in PostgreSQL. If
there are both AWESOME tables and PostgreSQL tables involved
in the query, the two candidate plans are illustrated in Figure 10a:
(a) as the left dashed rectangle shows, we store AWESOME tables
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Figure 10: Execution sub-plans and calibration results for cross-
engine ExecuteSQL. The part with ’//’ denote execution time of Exe-
cuteSQL operator.

to PostgreSQL, then execute the query in PostgreSQL; (b) as the
right dashed rectangle shows, we store AWESOME tables to SQLite
and select the columns needed from PostgreSQL tables and store
them to SQLite, then the query will be executed in SQLite.
Datasets. We design a set of graph datasets and relation datasets
which are used for graph- and relation-related operators respec-
tively. We present the statistics in Table 5.

For graph datasets, there are two types of graphs: The first type of
datasets is used to test operators including CreateGraph, PageRank
and the Type I Cypher queries: We created several property graphs
with different edge sizes, and to simplify the model we kept the
density of graphs as a constant value 2; each node (or edge) has a
value property which is a unigram and we make sure each node’s
(or edge’s) property is unique, then we created keywords lists with
different sizes from the values set as the predicates. The second
dataset is designed for the Type II Cypher queries: We created
graphs with different node sizes and each node has a tweet property
whose value is a tweet text collected from Twitter; All the unigrams
are collected from these tweets and after removing the most and
the least frequent words, we randomly selected words to create
different sizes of keywords lists which will be used to do text search.
Calibration Results. We present some calibration results for some
operators/patterns in Figure 11, Figure 10b and Figure 10c. Figure
11 shows part of the calibration results for some graph operators.
Figure 10b and 10c show the calibration results for the ExecuteSQL
operator where the query includes a PostgreSQL table and an AWE-
SOME table and the two sub-plans correspond to the sub-plans in
Figure 10a.

Table 5: Parameters of synthetic datasets for cost model.
Parameter Value

graph dataset 1

edge size 500, 1k, · · · , 800k
avg. density 2

node property value: String
keyword size 50, 100, 500, 1k, 2k

graph dataset 2
node size 5k, 10k, · · · , 500k

node property tweet: String
keyword size 50, 100, 500, 1000

relation dataset PostgreSQL table row count 100, 1k, 10k, 100k
Awesome table row count 100, 1k, 10k, 100k
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Figure 11: Calibration results for graph operators

7.3 Training and Cost Estimation
The individual cost model for each operator is trained based on the
calibration results to minimize the loss function, i.e., mean squared
error. At run-time, when the input of a virtual node is returned
from the upstream operator, the features are collected and passed
to the overall cost model (Equation 2) to compute the cost for each
candidate physical sub-plan. The best sub-plan with the lowest cost
will be selected.

8 EXPERIMENTS
In this section, we first empirically validate whether AWESOME is
able to improve efficiency of analytical polystore workloads. Then,
we drill into how the cost model of AWESOME contributes.

8.1 Experimental Setup
We focus on the single-machine multi-cores setting, and the dis-
tributed version of AWESOME will be our future work. The experi-
ments were run on CloudLab [12], a free and flexible cloud platform
for research. The machine has 24-core AMD 7402P CPUs, 128 GB
memory and 1.6 TB disk space. It runs Ubuntu 18.04.
Datasets. We collect four real world datasets to run the workloads.
• Newspaper : A relation stored in a PostgreSQL database aliased as

News with size around 36 GB. There are over 1M news articles
with an average length of 500 words collected from the Chicago
Tribune newspaper.
• SenatorHandler : A PostgreSQL relation of about 90 United States

senators with their names and twitter user names stored in Post-
gresSQL database aliased as Senator.

• NewsSolr: A collection of news stored in the Solr engine with
size around 20 GB.

• TwitterG: Attribute graphs stored in Neo4j that represent the
Twitter social networks of different sizes. A node in TwitterG
is labeled as either “User” or “Tweet”. A User node has a prop-
erty userName, and a Tweet node has a property tweet storing
tweet content. A User node connects to another User node by
a directed edge if the first one mentions the second, and a User
node connects to a Tweet node by a directed edge if the user
authors the tweet.

Workloads. We evaluate two analytical workloads. W1: PoliSci
focuses on the polystore aspect of the system where input data is
stored in heterogeneous data stores. W2: NewsAnalysis, a complex
text analytical task, focuses on analytical functions including graph
algorithm like PageRank [27] and NLP functions like LDA [30].

The illustration and ADIL script of PoliSci are shown in Figure 1
and Figure 3. This workload queries on theNewsSolr, SenatorHandler
and TwitterG dataset. For workload NewsAnalysis, the correspond-
ing ADIL script is given in Appendix B. It selects news from News
dataset and applies LDA model to detect topics from the corpus.
Then it implements the method in [15] to evaluate the quality of
each topic. Specifically, for each topic, from news corpus a word-
neighbor graph is constructed which consists of the keywords in
the topic and the aggregated PageRank value of these keywords in
this graph will be used as a metric to evaluate the quality of the
topic.
Parameter Settings. For the PoliSci workload, we change two
parameters: 1) 𝑛𝑒𝑤𝑠𝑆 , the size of documents 𝑑𝑜𝑐 selected from
NewsSolr dataset and is set by changing 𝑟𝑜𝑤𝑠 = 5000 in the Solr
query to different values. 𝑛𝑒𝑤𝑠𝑆 ∈ {5𝐾, 10𝐾, 20𝐾}. 2) the size of
the graph 𝑇𝑤𝑖𝑡𝑡𝑒𝑟𝐺 : the graph size, denoted by 𝑔, is the number of
nodes in it. 𝑔 ∈ {100𝐾, 500𝐾, 1𝑀}. 𝑛𝑒𝑤𝑠𝑆 will have impact on the
size of 𝑒𝑛𝑡𝑖𝑡𝑦 and thus will influence the executeSQL execution time,
and 𝑔 will influence on executing the two Cypher queries. For the
NewsAnalysis workload, we vary two parameters: 𝑛𝑒𝑤𝑠𝑅 is the size
of news selected from Newspaper relation:𝑛𝑒𝑤𝑠𝑅 ∈ {5𝐾, 10𝐾, 50𝐾};
𝑡 is the number of keywords in each topic: 𝑡 ∈ {1𝐾, 5𝐾, 10𝐾} for the
end-to-end experiments and 𝑡 ∈ {50, 100, 500} for the drill down
analysis. 𝑛𝑒𝑤𝑠𝑅 and 𝑡 control the size of the documents and the
size of the word-neighbor graph for each topic.
Compared Methods. We implement and compare the following
methods. We put the SQL scripts for Postgres+UDF method and
Python code for Python in Appendix A and C. For Postgres+UDF
implementation, the scripts have around 400 and 1000 tokens re-
spectively for the two workloads and Python codes have around
380 and 600 tokens for each. While ADIL scripts only have around
100 tokens for each.

• Postgres+UDF: It stores all datasets to a single store, Postgres,
and uses pure SQL scripts with user-defined functions written
in Python or implemented by MADLIB [17] toolkit.

• Python: The workloads were implemented in Python. To make
sure the results are the same as AWESOME’s and to make the
comparison fair, for analytical functions such as LDA and NER,
we use the same toolkits as used by AWESOME.
• AWESOME(ST): ST stands for single threaded. It does not use

any AWESOME features including logical plan optimization, data
parallel execution and cost model.

• AWESOME(DP): DP stands for data parallelism. It only applies
data parallelism feature.

• AWESOME: It has full AWESOME features including logical
optimization, cost model and data parallelism.
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Figure 12: Total execution time for PoliSci w.r.t. different 𝑛𝑒𝑤𝑠𝑆 .
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Figure 13: Total execution time for NewsAnalysis w.r.t. different 𝑛𝑒𝑤𝑠𝑅.
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Figure 14: Execution time of different physical plans.

8.2 End-To-End Efficiency
For AWESOME baselines, the end-to-end execution time is the total
execution time from taking a workload as input, parsing, validat-
ing, logical planning, physical planning and executing. For Post-
gres+UDF baseline, to make the comparison fair, we exclude the
data movement cost, which is the time spent to move data from
others stores to Postgres, from the total cost. Figure 12 and Fig-
ure 13 present the end-to-end execution costs of the four compared
methods. The numbers on top of bars denote the speed-up ratio to
the Python baseline. The black Xs mean that the program either
pops out an error or can not finish in 3 hours.

From the results, AWESOME(DP) and AWESOME show great
efficiency and scalability when varying the parameters. It dramati-
cally speeds up the execution time over Postgres+UDF. For News-
Analysis, when 𝑛𝑒𝑤𝑠𝑅 = 50𝐾 , Postgres+UDF pops out a sever
connection lost error message when running in-Postgres LDA func-
tion. Comparing with AWESOME(ST), data parallelism achieves
significant performance under any parameter setting. In the follow-
ing, we mainly discuss the performance gain of AWESOME(DP)
and AWESOME over the baseline method Python.

For workload PoliSci, when the graph size𝑔 increases, AWESOME
achieves an increasingly large speedup over the Python implemen-
tation. When 𝑔 = 100𝐾 , AWESOME(DP) is a little bit slower than
Python, but with the cost model, AWESOME has similar perfor-
mance as Python; When 𝑔 is increased to 1𝑀 and 𝑛𝑒𝑤𝑠𝑆 = 5𝐾 ,
AWESOME(DP) and AWESOME speeds up the execution time by
∼ 3x and ∼ 5x respectively.

For workload NewsAnalysis, when 𝑛𝑒𝑤𝑠𝑅 = 5𝐾 and keywords
size is large (𝑡 = 10𝐾), AWESOME(DP) and AWESOME can
achieve up to ∼ 3x and ∼ 7x speed-up respectively over Python;
when 𝑛𝑒𝑤𝑠𝑅 = 50𝐾 and keyword size is 10𝐾 , AWESOME(DP)
pops out an out of memory error because it selected a bad execu-
tion plan, while AWESOME is scalable and can finish in around 10
minutes which is about 5x speedup over Python.
Why not single DBMS with UDF? From our experience with
implementing the Postgres+UDF, we found that this single DBMS
with UDF setting fails to qualify polystore analytical tasks for three
reasons: 1) Data movement cost. Users need to write ad-hoc code
to move data from various stores to a single store. 2) Programming
difficulty. It is not flexible to program with pure SQL. For work-
load NewsAnalysis, even with MADLIB toolkit which implements
LDA and PageRank UDFs, hundreds of lines of SQL needed to be
written (as shown in the Appendix A). 3) Efficiency. The in-DBMS
implementation of analytical functions such as LDA and PageR-
ank are much less efficient than using the mature packages from
Java or Python, and the current in-DBMS implementation of some
analytical functions is not scalable as well.

8.3 Drill-Down Analysis
We present some detailed evaluation results to explain how AWE-
SOME achieves a better performance over AWESOME(DP).

We take some snippets from each workload and show the ex-
ecution time of different candidate sub-plans for these snippets
in Figure 14. The parts with “//” hatch denote execution time for
ExecuteSQL physical operator. The bars with stars on top are the
best execution plans selected by AWESOME cost model.
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For workload PoliSci, Figure 14 (a) presents the execution time
for different sub-plans regarding to the cross engine ExecuteSQL
logical operator where one table (𝑆𝑒𝑛𝑎𝑡𝑜𝑟𝐻𝑎𝑛𝑑𝑙𝑒𝑟 table) is from
PostgreSQL and another (named entity table) is an AWESOME table.
The three execution plans are illustrated in Figure 10a. When the
selected documents size increases, the named entity table’s size will
increase and the in local Postgres execution plan will be much more
effective than the in remote Postgres one by not moving large size of
data to a remote Postgres server. In SQLite execution is not efficient
because even though storing table data to in memory SQLite is fast,
SQLite is slow when the two tables join on Text columns.

For workload NewsAnalysis, Figure 14 (b) shows the execution
time for logical plan ExecuteSQL. The possible physical sub-plans
are shown in Node 1 in Figure 7. The cost model does not look at
each single operator, e.g., ExecuteSQL, to decide the best physical
operator, instead, it looks at the sub-plan which consists of both
creation and query execution to determine the best physical sub-
plan. We selected some small keywords sizes for this drill down
analysis: 𝑡 = {50, 100, 500} since when 𝑡 gets larger, the In-SQLite
execution always dominates. As (b) shows, the SQL query execution
time of local Postgres is less than that of SQLite, however, when
considering both table creation time and execution time, the in-
memory SQLite plan will be chosen for 𝑡 = {100, 500}. These results
on small snippets demonstrate the effectiveness of our cost model.

We pick a snippet from NewsAnalysis to analyze the effectiveness
of buffering mechanism:
rawNews := executeSQL("News", "select id as newsid,

news as newsText from usnewspaper
where src = $src limit 1000");

processedNews := tokenize(rawNews.newsText,
docid=rawNews.newsid,
stopwords="stopwords.txt");

This snippet is translated to a chain of physical operators where
a buffer mechanism can be added to any two successive opera-
tors: ExecuteSQL→ CreateCorpusFromColumn→ SplitByPatterns
→ FilterStopWords. The number of documents retrieved by the SQL
query is set as 1 million by changing the “limit” clause. The memory
footprint is presented in Figure 15. Adding buffering mechanism
decreases the used heap size from around 27 GB to about 17 GB
(∼ 37% reduction) with a small run-time overhead (∼ 8% increase).

(a) Without buffering mechanism. (b) With buffering mechanism.
Figure 15: Memory footprint of executing a chain.

9 RELATED WORK
We present the features comparison of selected prior polystore
systems and AWESOME in Table 1. Besides the systems shown
here, there are some existing work [9, 14, 19, 20, 23] which focus
on integrating multiple data processing platforms such as Spark,
Hadoop, GraphX to process heterogeneous data. However, they do
not focus on DBMSs, and hence are not discussed in detail in this
paper. We conclude some important language and system design
features for analytical polystores based on our experience working
with domain scientists. As the table suggests, none of the prior
polystore systems has all of these features.

9.1 Polystore Languages
BigDAWG [10, 11, 31], Estocada [5, 6] and Tatooine [7] all support
querying backend DBMSs using native languages. However, they
do not support analytical functions or any control flow logic such
as IF-ELSE or For loop.

RheemLatin [4, 20, 23] is an extension from PigLatin [26]. Similar
to ADIL, it has its native data models and grammars; it has Loop
operators to support tasks with iterations. Users write platform
agnostic analysis plan using Rheem keywords which makes it easier
to do query optimization but also brings several deficiencies: 1) For
queries against DBMSs, it shows that users can express a SQL query
in RheemLatin, however, it will be hard or impossible to rewrite
a Cypher query or Solr query using Rheem keywords. 2) It does
not support analytical functions such LDA or NLP annotations in
native. Users can write an analytical function as a combination of
RheemLatin keywords, however, it requires a lot of programming
efforts and expert knowledge.

Myria [34] provides a hybrid imperative-declarative query lan-
guage called MyriaL. It consists of a sequence of assignment state-
ments where the left-hand sides are relation variables and the right-
hand sides can be a SQL query, comprehensions, or function calls.
It also supports flow control logic such as DO-WHILE structure.
However, SQL is the only supported query language.

Hybrid.Poly [28, 29] provides a hybrid relational analytical query
language stemming from SQL which is based on their extended
relational model. It uses an SQL-like language where analytical
functions (e.g., dot products) are specified in the SELECT clause,
but it does not provide built-in text or graph analytical functions.

9.2 Polystore Systems
All of these polystore systems support RDBMS, but to the best of
our knowledge, none of them support both graph and text DBMS.
Among all of them, only Hybrid supports in-memory database
engines. We conclude some design details for selected systems.

BigDAWG [10, 11, 31] organizes storage engines into a number
of islands. An island is composed of a data model, a set of operations
and a set of candidate storage engines. It supports heterogeneous
data models including relational tables and arrays, and supports
cast functions to migrate data from one island with one data model
to another island with a different model. To our best knowledge,
BigDAWG does not support graph DBMS or analytical functions.

The Rheemix system [20] is a cross-platform system built over di-
verse engines including PostgreSQL, Spark, Flink and Java Streams.
In Rheemix, analytical tasks are specified as a workflow of Rheemix
operators (e.g., filter, map, groupBy) that are directly mapped
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to operators of the underlying systems through operator infla-
tion. Their operators are primitive (fine-granular) operators, which
makes optimization easier at the cost of expressiveness.

Hybrid.Poly [28, 29], a relationally backed in-memory polystore
system, only uses one consolidated parallel engine as a back-end
to store all data. It decomposes a full analysis into a series of an-
alytical queries where variables are passed by explicitly creating
tables of intermediate results. It extends the relational data model
with additional types and operations to support matrix and vector
abstractions and operators over them. Different from AWESOME, it
does not support text or graph data models or any on-disk databases.

Our general observation is that, while there is a clear growth in
creating and using polystores for different applications, no existing
polystore system supports all requisite features needed by domain
scientists to solve a variety of real-world analytical workloads.

10 CONCLUSION AND FUTURE WORK
In this work, we empower an emerging class of large-scale data
science workloads over social media data that naturally straddle
analytics over relations, graphs, and text. In contrast to complemen-
tary work on polystores that aim for high generality, we build a
more specific tri-store system we call AWESOME that offers a suc-
cinct domain-specific language on top of standard unistore engines,
automatically handles intermediate data, and performs automatic
query optimizations. We empirically demonstrate the functional-
ity and efficiency of AWESOME. As for future work, we plan to
pursue new cross-model query optimization opportunities to make
AWESOME even faster and also scale to distributed execution.
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A SQL SCRIPT FOR TWO WORKLOADS
A.1 NewsAnalysis
create function buildgraphfromtext
(text character varying[], distance integer)
returns character varying[]

language plpython2u
as
$$
count = {}
for i in range(len(text)-distance):

for j in range(1, distance):
temp = (text[i], text[i+j])
if temp in count:

count[temp] += 1
else:

count[temp] = 1
result = []
for key in count:

result.append([key[0], key[1], count[key]])
return result
$$;
create function unnest_2d_1d(anyarray) returns SETOF anyarray

immutable
strict
parallel safe
language sql

as
$$
SELECT array_agg($1[d1][d2])
FROM generate_subscripts($1,1) d1

, generate_subscripts($1,2) d2
GROUP BY d1
ORDER BY d1
$$;

drop table if exists tokenizednews, graph, topicgraph CASCADE;
drop MATERIALIZED VIEW if exists graphelement;
-- set execution begin time
INSERT INTO timenow(type, starttime, stoptime)
SELECT '5k', now(), clock_timestamp();
---- tokenize and build word neighbor graph
CREATE table tokenizednews as (
select id as docid, news from newspaper
where src = ' http://www.chicagotribune.com/'
order by id limit 5000);
ALTER TABLE tokenizednews ADD COLUMN words TEXT[];
UPDATE tokenizednews SET words =

regexp_split_to_array(lower(
regexp_replace(news, E'[,.;\']','', 'g')
), E'[\\s+]');

create MATERIALIZED VIEW graphelement as (
with temp as (

select unnest_2d_1d(buildgraphfromtext(words, 5)) as n
from tokenizednews),

temp2 as (
select n[1] as word1, n[2] as word2, n[3]::INTEGER as cnt
from temp)

select word1, word2, sum(cnt) from temp2 group by word1, word2
);

---- LDA
DROP TABLE IF EXISTS news_tf, news_tf_vocabulary,lda_model,
lda_output_data, helper_output_table,
topicgraph, pagerank_out, pagerank_out_summary;

SELECT madlib.term_frequency(
'tokenizednews', -- input table
'docid', -- document id column
'words', -- vector of words in document
'news_tf', -- output test table with term frequency
TRUE); -- TRUE to created vocabulary table

SELECT madlib.lda_train(
'news_tf', -- test table in the form of term frequency
'lda_model', -- model table created by LDA training
'lda_output_data', -- readable output data table

200000, -- vocabulary size
10, -- number of topics
1000, -- number of iterations
1, -- Dirichlet prior for the per-doc topic multinomial
0.01 -- Dirichlet prior for the per-topic word multinomial
);

SELECT madlib.lda_get_topic_desc(
'lda_model', -- LDA model generated in training
'news_tf_vocabulary', -- vocabulary table that maps wordid to word
'helper_output_table', -- output table for per-topic descriptions
20000);

INSERT INTO timenow(type, starttime, stoptime)
SELECT 'LDA', now(), clock_timestamp();

--- create a text network graph
create table graph as (

select word1, word2 from graphelement where word1!='' and word2!=''
group by word1, word2

);
---- build graph for each one
create table topicgraph as (

with topicwords as
(select word,wordid
from helper_output_table
where prob > 0 and topicid = 0
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 1 as topic
from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 1
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 2 as topic
from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 2
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 3 as topic
from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 3
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 4 as topic
from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 4
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 5 as topic
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from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 5
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 6 as topic
from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 6
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 7 as topic
from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 7
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 8 as topic
from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 8
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2, 9 as topic
from temp, topicwords
where temp.word2=word );

insert into topicgraph(word1, word2, topic) (
with topicwords as

(select word,wordid
from helper_output_table
where prob > 0 and topicid = 9
order by prob desc limit 7000),

temp as (
select wordid, word2 from graph, topicwords
where word1 = word)
select temp.wordid as word1, topicwords.wordid as word2,
10 as topic
from temp, topicwords
where temp.word2=word );

--- pagerank for each topic
SELECT madlib.pagerank(

'news_tf_vocabulary', -- Vertex table
'wordid', -- Vertix id column
'topicgraph', -- Edge table
'src=word1, dest=word2', -- Comma delimted string of
'pagerank_out', -- Output table of PageRank
NULL, -- Default damping factor (0.85)
NULL, -- Default max iters (100)
0.00000001, -- Threshold

'topic');
INSERT INTO timenow(type, starttime, stoptime)
SELECT '5k_0', now(), clock_timestamp();

A.2 PoliSci
create function callner (tname character varying,
colname character varying,
filename character varying)
returns character varying

language plpython3u
as
$$
import os
import subprocess
with open(filename, 'w') as f:

for row in plpy.cursor("SELECT " + colname + " FROM "+tname):
f.write(row[colname]+'\n')

temp_file = filename.split(".")[0]
subprocess.call(['java', '-jar',

'/var/lib/postgresql/data/ner/target/NER-1.0-SNAPSHOT.jar',
'-i', filename, '-o', temp_file])

return temp_file
$$;
drop table if exists keynews, keyusers, namedentity, timenow;
--- record start time
INSERT INTO timenow( type, starttime, stoptime)

SELECT 'ner_start', now(), clock_timestamp();
create table keynews as (

select news from newspaper
where news @@ to_tsquery('corona|covid|pandemic|vaccine')
limit 5000);

select callner('xw_keynews', 'news', 'news.txt');
CREATE TABLE namedentity (
type text,
entity text

);
COPY namedentity(type, entity)
FROM 'news'
DELIMITER ','
CSV HEADER;
create table keyusers as (
select distinct t.name as name, t.twittername as twittername

from twitterhandle t,
namedentity e

where LOWER(e.entity) = LOWER(t.name));
--- record ner time
INSERT INTO timenow( type, starttime, stoptime)

SELECT 'ner_end', now(), clock_timestamp();
select text from neo4j_tweet50000, keyusers

where text ilike '%' || keyusers.name || '%';
select * from neo4j_user_user50000

where userid2 in (
select userid from neo4j_user50000
where username in (select twittername from keyusers));

--- record end time
INSERT INTO timenow( type, starttime, stoptime)

SELECT 'all', now(), clock_timestamp();
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B ADIL SCRIPT FOR WORKLOAD
NEWSANALYSIS

/*specify configuration file*/
USE newsDB;
/* main code block */
create analysis NewsAnalysis as (
src := "http://www.chicagotribune.com/";
rawNews := executeSQL("News",

"select id as newsid, news as newsText
from newspaper
where src = $src limit 1000");

processedNews := preprocess(rawNews.newsText,
docid=rawNews.newsid,
stopwords="stopwords.txt");

numTop := 10;
DTM, WTM := lda(processedNews, docid=true, topic=numTop);
topicID := [range(0, numberTopic, 1)];
wtmPerTopic := topicID.map(i =>

WTM where getValue(_:Row, i) > 0.00);
wordsPerTopic := wtmPerTopic.map(i => rowNames(i));
wordsOfInterest := union(wordsPerTopic);
G := buildWordNeighborGraph(processedNews,

maxDistance=5, splitter=".",
words=wordsOfInterest);

relationPerTopic := wordsPerTopic.map(words =>
(<n:String, m:String, count:Integer>)
executeCypher(G, "match (n)-[r]->(m)
where n in $words and m in $words
return n, m, r.count as count"));

graphPerTopic := relationPerTopic.map(r =>
ConstructGraphFromRelation(r,
(:Word {id: r.n})-[:Cooccur{count: r.count}]->
(:Word{id: r.m})));

scores := graphPerTopic.map(g =>
pageRank(g, topk=true, num=20));

aggregatePT := scores.map(i => sum(i.pagerank));
/* store a list to rDBMS as a relation*/
store(aggregatePT t, dbName="News",

tableName="aggregatePageRankofTopk",
columnName=[("id",t.index), ("pagerank",t.value)]);

Figure 16: NewsAnalysis workload written in ADIL script.
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C PYTHON CODE FOR TWO WORKLOADS
C.1 NewsAnalysis
import getopt
import io
import numpy as np
import sys
import time
from multiprocessing import Pool
import math
import networkx as nx
import sqlalchemy as sal
from gensim import corpora
from gensim.models.ldamulticore import LdaMulticore
from gensim.models.wrappers import LdaMallet
from sqlalchemy import text

# tokenize
def tokenize(doc):

return doc.split(" ")

def build_graph_from_text(docs, dis, words):
count = {}
for doc in docs:

for i in range(len(doc) - dis):
if doc[i] in words:

for j in range(1, dis):
tempPair = (min(doc[i], doc[i + j]),

max(doc[i], doc[i + j]))
if doc[i + j] in words:

if tempPair in count:
count[tempPair] += 1

else:
count[tempPair] = 1

return count

def split(list_a, chunk_size):
for idx in range(0, len(list_a), chunk_size):

yield list_a[idx:idx + chunk_size]

# LDA
def LDA(docs):

id2word = corpora.Dictionary(docs)
corpus = [id2word.doc2bow(text) for text in docs]
model = LdaMulticore(corpus=corpus, num_topics=10,

iterations=1000, id2word=id2word,workers=15)
return model.show_topics(num_words=len(id2word))

def LDA_mallet(docs, threshold):
path_to_mallet_binary = "/users/Xiuwen/Mallet/bin/mallet"
id2word = corpora.Dictionary(docs)
corpus = [id2word.doc2bow(text) for text in docs]
model = LdaMallet(path_to_mallet_binary, corpus=corpus, num_topics=10,

iterations=1000, id2word=id2word,
random_seed=2, alpha=0.1, workers=96)

matrix = model.get_topics()
words = []
for row in matrix:

words_ids = np.argsort(row)[-threshold :]
words.append(set([id2word[w] for w in words_ids]))

return words

def page_rank(graph_data, num_of_point):
G = nx.Graph()
for i in graph_data:

G.add_edge(i[0], i[1], weight=i[2])
pr = nx.pagerank(G)
return sorted(pr.items(), key=lambda val: val[1],

reverse=True)[:num_of_point]

if __name__ == '__main__':
num_of_docs = ""

threshold = ""
argv = sys.argv[1:]
core = 1
try:

opts, args = getopt.getopt(argv, "i:t:c:")
except getopt.GetoptError:

print('query1.py -i <size> -t <threshold> -c <cores>')
sys.exit(2)

for opt, arg in opts:
if opt == "-i":

num_of_docs = arg
elif opt == "-t":

threshold = arg
elif opt == "-c":

core = int(arg)
if num_of_docs == "" or threshold == "":

print('query1.py -i <size> -t <threshold> -c <cores>')
sys.exit(2)

start = time.time()
# read data
engine = sal.create_engine('postgresql+psycopg2://')
conn = engine.connect()
sql = text("select newstext from xw_news_"+num_of_docs)
result = conn.execute(sql)
sql_exe = time.time()
print("sql execution time: " + str(sql_exe - start))
tokenized_docs = [tokenize(i[0]) for i in result]
tk_exe = time.time()
print("tokenize execution time: " + str(tk_exe - sql_exe))
# read LDA results
path = "/proj/awesome-PG0/data/"
if num_of_docs=='5000':

path = path + "5k/"
else:

path = path + "50k/"
# path = "C://Users//xiuwen//Documents//"
# get only partial words
words_index_per_topic = []
words_file = open(path+'sortedwords.txt', 'r')
words_lines = words_file.readlines()
for words in words_lines:

words_index = [int(i) for i in words.strip().split(", ")][:int(threshold)]
words_index_per_topic.append(words_index)

alphabet_file = io.open(path +'alphabet.txt', 'r', encoding='utf-8')
alphabet = alphabet_file.readline().strip().split(", ")
words_per_topic = [set([alphabet[i] for i in index])

for index in words_index_per_topic]
# get all words
all_words = list(set.union(*words_per_topic))
print("size of keywords after union: " + str(len(all_words)))
lda_exe = time.time()
print("lda execution time: " + str(lda_exe - tk_exe))
pool = Pool(processes=core)
jobs = []
# split data to the number of cores partitions
size = int(math.ceil(float(len(tokenized_docs)) / core))
count_threads = []
sublists = list(split(tokenized_docs, size))
print(len(sublists))
for alist in sublists:

count_threads.append(pool.apply_async(
build_graph_from_text, (alist, 5, all_words)))

pool.close()
pool.join()
graph_elements = []
total_counts = {}
for c_count in count_threads:

c_count_map = c_count.get()
for key in c_count_map:

if key in total_counts:
total_counts[key] += c_count_map[key]

else:
total_counts[key] = c_count_map[key]

for key in total_counts:
graph_elements.append([key[0], key[1], total_counts[key]])

print (graph_elements[:10])
bg_exe = time.time()
print("bg execution time: " + str(bg_exe - lda_exe))
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graph_data_per_topic = []
# get graph data for each topic
for i in range(10):

words_in_this_topic = words_per_topic[i]
temp_graph = [g for g in graph_elements if g[0]

in words_in_this_topic and g[1] in words_in_this_topic]
graph_data_per_topic.append(temp_graph)

bsg_exe = time.time()
print("bg execution time: " + str(bsg_exe - bg_exe))

# get pagerank for each topic
pagerank_all_topics = [page_rank(i, 20) for i in graph_data_per_topic]
print(pagerank_all_topics)
end = time.time()
print("pr execution time: " + str(end - bsg_exe))
print(end - start)

C.2 PoliSci
import time
import sqlalchemy as sal
from sner import Ner
import getopt
import sys

if __name__ == '__main__':
num_of_docs = ""
tweet = ""
argv = sys.argv[1:]
core = 1
try:

opts, args = getopt.\
getopt(argv, "i:t:c:")

except getopt.GetoptError:
print('query2.py -i <size> -t <tweet>')
sys.exit(2)

for opt, arg in opts:
if opt == "-i":

num_of_docs = arg
elif opt == "-t":

tweet = arg
if num_of_docs == "" or tweet == "":

print('query1.py -i <size> -t <threshold> -c <cores>')
sys.exit(2)

start = time.time()
# sql query without full text search index
sql = "select news from usnewspaper where news " \

"@@ to_tsquery('corona|covid|pandemic|vaccine') limit " \
+ num_of_docs

engine = sal.create_engine('postgresql+psycopg2://')
conn = engine.connect()
result = conn.execute(sql)
docs = [i[0] for i in result]
# print([ner(i[0]) for i in result])
print("full text search cost: " + str(time.time() - start))
# NER
nes = []
tagger = Ner(host='localhost', port=9299)
for d in docs:

try:
en = tagger.get_entities(d)
nes.extend(en)

except:
continue

key_nes = set([i[0].lower() for i in nes if i[1] != 'O'])
# get senators
sql = "select name, twittername from twitterhandle"
conn = engine.connect()
result = conn.execute(sql)
senators_name_tn = [[i[0].lower(), i[1]] for i in result]
# get userid-username
sql = "select userid, username from xw_neo4j_user"+tweet
conn = engine.connect()
result = conn.execute(sql)
user_id_name = [[i[0], i[1]] for i in result]
# get user-tweet network
sql = "select text from xw_neo4j_tweet"+tweet

conn = engine.connect()
result = conn.execute(sql)
texts = [i[0].lower() for i in result]
# get user-user network
sql = "select userid1, userid2 from xw_neo4j_user_user"+tweet
conn = engine.connect()
result = conn.execute(sql)
users_users = [[i[0], i[1]] for i in result]
# get key users name and id
key_names = set()
key_users = set()
for i in key_nes:

for s in senators_name_tn:
name = [i for i in s[0].lower().split(" ") if len(i) > 2]
if i in name:

key_names.add(i)
key_users.add(s[1])

key_users_ids = []
for i in key_users:

for j in user_id_name:
if i == j[1]:

key_users_ids.append(j[0])
# get tweets that contain key users names

key_tweets = []
for t in texts:

for i in key_names:
if i in t.split(" "):

key_tweets.append(t)
break

# get users that mention key user id
second_key_users = []
for i in key_users_ids:

for j in users_users:
if j[1] == i:

second_key_users.append(j[0])
print("total cost: " + str(time.time() - start))
print(len(second_key_users))
print(len(key_tweets))

19



Xiuwen Zheng, Subhasis Dasgupta, Arun Kumar, Amarnath Gupta

D CALIBRATION RESULTS.

50 100 500 1000 2000
#keywords

101

102

103

tim
e 

(m
s)

Type I executeCypher time  (graph size=5K)
Tinkerpop
Neo4j
Neo4j With Index

(a) Graph size = 5𝐾 .
50 100 500 1000 2000 5000 8000 10000 20000

#keywords

102

103

104

tim
e 

(m
s)

Type I executeCypher time (graph size=50K)
Tinkerpop
Neo4j
Neo4j With Index

(b) Graph size = 50𝐾 .

50 100 500 1000 2000 5000 8000 10000 20000
#keywords

102

103

104

tim
e 

(m
s)

Type I executeCypher time  (graph size=100K)
Tinkerpop
Neo4j
Neo4j With Index

(c) Graph size = 100𝐾 .
50 100 500 1000 2000 5000 8000 10000 20000

#keywords

103

104

105

tim
e 

(m
s)

Type I executeCypher time  (graph size=100K)
Tinkerpop
Neo4j
Neo4j With Index

(d) Graph size = 500𝐾 .
Figure 17: Calibration results for Type I Cypher query
w.r.t. different graph sizes and #keywords.
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Figure 18: Calibration results for Type II Cypher query
w.r.t. different graph sizes and #keywords.
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Figure 19: Calibration results for cross engine executeSQL
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E AWESOME LOGICAL AND PHYSICAL OPERATORS.

Table 6: AWESOME logical and physical operators.
Types Logical Operators Physical Operators DataParallelCap BufferingCap

Query
ExecuteCypher
ExecuteSQL
ExecuteSolr

ExecuteCypher@Neo4j
ExecuteCypher@Tinkerpop
ExecuteSQL@Postgres
ExecuteSQL@SQLite
ExecuteSolr
FetchDBMSResults
CreateRelation@Postgres
CreateRelation@SQLite

EX
EX
EX
EX
EX
ST
EX
EX

B
B
B
B
B
SO
SI
SI

Graph Operations

BuildWordNeighborGraph
BuildGraphFromRelation
BuildGraph
PageRank
ComputeNodeDegrees
ComputeKNeighbors

CollectGraphElementsFromDocs
CollectGraphElementsFromRelation
CreateNeo4jGraph
CreateTinkerpopGraph
PageRankInNeo4j
PageRankInTinkerpop
ComputeNodeDegrees
ComputeKNeighbors

PR
PR
EX
EX
EX
EX
EX
EX

SS
SS
SI
SI
SO
SO
SO
SO

Relation Operations GetColumns GetColumns
RecordsToList

ST
ST

SS
SS

Text Operations

Tokenize
LDA
SVD
TopicModel
PhraseExtraction
NER

CreatDocumentsFromRecord
CreatDocumentsFromList
FilterStopWords
SplitByPatterns
CreateTextMatrix
PhraseExtraction
NER
LDA
SVD

PR
PR
PR
PR
ST
PR
PR
EX
EX

SS
SS
SS
SS
SI
SS
SS
B
B

MappedMatrix Operations

TopicModel
GetValue
ColumnKeys
RowKeys

LDA
SVD
GetValueByIndex
GetValueByKeys
ColumnKeys
RowKeys

EX
EX
ST
ST
ST
ST

B
B
B
B
B
B

Other Functions Sum
Range

SumList
SumColumn
SumMatrix
SumVector
Range

PR
PR
PR
PR
ST

SI
SI
SI
SI
SO

Data Movement Store

ListToPostgres
InMemoryRelationToPostgres
InMemoryGraphToNeo4j
RecordsToPostgres
GraphElementsToNeo4j
ListToCSV
InMemoryRelationToCSV
RecordsToCSV

ST
ST
ST
ST
ST
ST
ST
ST

SI
B
B
SI
SI
SI
B
SI
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